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G lycosylphosphatidylinositol (GPI) acts as a
membrane anchor for a small but significant
proportion of eukaryotic cell-surface glycopro-

teins and is particularly abundant in protozoan parasites
such as Trypanosoma brucei, the causative agent of Af-
rican sleeping sickness in humans and the related dis-
ease Nagana in cattle (1). African sleeping sickness,
also known as human African trypanosomiasis, is invari-
ably fatal if untreated and kills upward of 50,000 people
each year. Current treatments are expensive, toxic, and
difficult to administer, leaving an urgent need for new
therapeutic agents (2). While drug discovery programs
for African sleeping sickness have recently started in ac-
ademia, there remains a need to identify and character-
ize new drug targets to feed this effort (3).

Disruption of GPI biosynthesis in the clinically rel-
evant bloodstream form of T. brucei has been geneti-
cally (4−6) and chemically (7) validated as a drug tar-
get. Bloodstream form T. brucei express �5 � 106 GPI-
anchored variant surface glycoprotein homodimers per
cell, forming a dense surface coat that protects the para-
site from the complement pathway of the host. The ex-
posed variant surface glycoprotein undergoes antigenic
variation to evade specific immune responses (8, 9),
leaving little hope of an effective vaccine, but the core
GPI structure is invariant. The less abundant (�3 � 104

copies per cell) but equally essential parasite trans-
ferrin receptor is also GPI-anchored (10−13).

The structure, biosynthesis, and function of GPI an-
chors and related molecules have been extensively re-
viewed (1, 14−16). The basic GPI core, which is con-
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ABSTRACT Glycosylphosphatidylinositol (GPI)-anchored proteins are abundant
in the protozoan parasite Trypanosoma brucei, the causative agent of African
sleeping sickness in humans and the related disease Nagana in cattle, and disrup-
tion of GPI biosynthesis is genetically and chemically validated as a drug target.
Here, we examine the ability of enzymes of the trypanosomal GPI biosynthetic
pathway to recognize and process a series of synthetic dimannosyl-glucos-
aminylphosphatidylinositol analogues containing systematic modifications on the
mannose residues. The data reveal which portions of the natural substrate are im-
portant for recognition, explain why mannosylation occurs prior to inositol acyla-
tion in the trypanosomal pathway, and identify the first inhibitor of the third
�-mannosyltransferase of the GPI biosynthetic pathway.
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served between eukaryotes, consists of NH2CH2CH2-
PO4H-6Man�1-2Man�1-6Man�1-4GlcN�1-6-D-myo-
inositol-1-HPO4-lipid, where the lipid can be diacylglyc-
erol, lyso-acylglycerol, alkylacylglycerol, or ceramide,
and is often further decorated with additional ethanol-
amine phosphate and/or carbohydrate groups and/or
fatty acid attached to the inositol residue (inositol acyla-
tion) in a species- and tissue-specific manner. Biosyn-
thesis of GPI in T. brucei (Figure 1, panel a), which oc-
curs in the endoplasmic reticulum, is initiated by the
transfer of GlcNAc from UDP-GlcNAc to phosphatidyl-
inositol (PI) to generate N-acetyl-glucosaminylphospha-
tidylinositol (1, GlcNAc-PI), which is de-N-acetylated to

produce glucosaminylphosphatidylinositol (2, GlcN-PI)
(17). De-N-acetylation is a prerequisite for the subse-
quent mannosylation of GlcN-PI (18), which requires the
sequential action of three distinct mannosyltransferases
(MTI, MTII, and MTIII) to form trimannosyl-glucosaminyl-
phosphatidylinositol (Man3GlcN-PI). MTIII, a Dol-P-Man:
Man2GlcN-PI �(1-2) mannosyltransferase, has been
shown genetically to be essential in bloodstream form
T. brucei (4). From GlcN-PI onward there are significant
differences in the GPI biosynthetic pathways of T. bru-
cei and mammalian cells. In T. brucei, inositol acylation
occurs only after addition of the first mannose and is
only essential for the addition of ethanolamine phos-
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Figure 1. GPI biosynthetic pathway of bloodstream form T. brucei and models of the processing of synthetic GPI analogues by the T. brucei cell-
free system. a) Representation of the complete GPI biosynthetic pathway of bloodstream form T. brucei. b) Processing of Man2GlcN-IPC18 by the
trypanosome cell-free system. c) Alternative mechanisms for the production of [3H]-Man2GlcN-IPC18. d) Processing of Man2GlcN-IPC18 analogues by
the trypanosome cell-free system. Enzymes abbreviations: deNAc, GlcNAc-PI de-N-acetylase; MTI-III, mannosyltransferase I�III; acylT, inositol
acyltransferase; acylase, inositol deacylase; EtNPT, ethanolamine phosphate transferase. Asterisks are used to indicate [3H] mannose-containing
species. For structures of the Man2GlcN-IPC18 analogues, see Figure 2.
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phate to the third mannose, whereas in mammalian sys-
tems GlcN-PI undergoes inositol acylation before man-
nosylation occurs (19, 20).

No high resolution structural data exists for any of
the enzymes of the GPI biosynthetic pathway, and given
that the enzymes contain between 1 and 13 predicted
transmembrane domains and/or are components of
multiprotein complexes, such structural data may prove
difficult to obtain. The substrate specificity of the early
enzymes of the T. brucei and HeLa GPI biosynthetic
pathways have been examined in vitro using synthetic

substrate analogues (7, 18, 21−27). The T. brucei de-N-
acetylase and MTI enzymes have less stringent sub-
strate recognition compared with those of the mamma-
lian pathway, enabling substrate-based species-specific
inhibitors to be designed (23, 25, 26). However, little is
known about the substrate specificity of enzymes late in
the GPI biosynthetic pathway. Here, we use a chemical
biological approach, analogous to site-directed mu-
tagenesis of a protein, to characterize substrate recogni-
tion by essential enzymes late in the trypanosomal GPI
biosynthetic pathway.
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Figure 2. Structures of the GPI precursors and precursor analogues used in this study. The diacylglycerol-containing syn-
thetic substrates, GlcNAc-PI and Man2GlcN-PI, differ from the natural substrates only in that the acylation of positions 1
and 2 of the sn-glycerol moiety is hexadecanoyl (palmitoyl) rather than octadecanoyl (stearoyl) at position 1 and other
long-chain fatty acids at position 2.
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RESULTS AND DISCUSSION
Synthetic Analogues of Man2GlcN-PI. To examine

the substrate specificity of the MTIII of trypanosomal
GPI biosynthesis, a series of pseudotetrasaccharide
analogues of the natural substrate Man2GlcN-PI were
designed and synthesized (Figure 2). We reasoned that
any analogues processed by MTIII might also become
substrates for subsequent enzymes in the GPI biosyn-
thetic pathway and so yield additional information. Pre-
vious studies examining the substrate specificity of the
early enzymes of the T. brucei GPI biosynthetic pathway
have shown that the diacylglycerol portion of GlcNAc-PI
(1) may be replaced by the simple C18 alkyl chain of
GlcNAc-IPC18 (3) (23, 24). Thus, we hypothesized that

replacement of the diacylglycerol portion of Man2GlcN-PI
(4) by a simple C18 alkyl chain, producing Man2GlcN-
IPC18 (5), would not significantly affect recognition of the
analogues while simplifying synthesis and making the
compounds less susceptible to the action of phospho-
lipases and esterases. A series of 15 analogues of
Man2GlcN-IPC18 (6�20) were synthesized, containing
systematic modifications where each of the hydroxyl
groups of the two mannose residues were replaced in
turn, using hydrogen at each position on the first (6�8)
and non-reducing terminal (second) mannose (9�12),
and fluorine (13�16) or an amine group (17�20) at
each position on the second mannose residue. The abil-
ity of the trypanosomal GPI pathway to recognize and
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Figure 3. Priming T. brucei GPI biosynthesis with synthetic GPI precursors. Synthetic GPI precursors, as indicated, were incubated with GDP-
[3H]Man in the T. brucei cell-free system, and the radiolabeled GPI intermediates were extracted, separated by hptlc, and visualized by fluorogra-
phy. Radiolabeled glycolipids: DPM, dolichol-phosphate-mannose; Mn, MannGlcN-InoP-lipid; aM3, Man3GlcN-(acyl)lnoP-lipid; M3NAc, Man3GlcNAc-
lnoP-lipid; C=, EtNPMan3GlcN-(acyl)lnoP-lipid; A=, EtNPMan3GlcN-lnoP-lipid; X, novel glycolipid. The lipid component is either dipalmitoylglycerol
(for PI) or octadecanol (C18). Notes: PI-containing aM3 and C= migrate very close together; N-acetylated glycolipids migrate faster than their non-N-
acetylated counterparts. For clarity, only DPM, M3, and M3NAc are labeled in panel b.

TABLE 1. Sensitivity of radiolabeled glycolipids to enzymatic and chemical treatmentsa

Sensitivity to treatment

ID Structure JBAM PLC PLD Acid Base ASAM

DPM Dolichol-P-Man � � � � � �

M1 Man1GlcN-PI � � � � � ND
aM3 Man3GlcN-(acyl)PI � � � � � ND
M2 Man2GlcN-PI � � � � � ND
M3 Man3GlcN-PI � � � � � ND
C= EtNPMan3GlcN-(acyl)PI � � � � � ND
A= EtNPMan3GlcN-PI � � � � � ND
M1 Man1GlcN-IPC18 � � � � � �

aM3 Man3GlcN-I(acyl)PC18 � - � � �b �c

M2 Man2GlcN-IPC18 � � � � � �

C= EtNPMan3GlcN-I(acyl)PC18 � � � � �b �

M3 Man3GlcN-IPC18 � � � � � �c

X Unassigned � � � � � �

A= EtNPMan3GlcN-IPC18 � � � � � �

aThe order of the glycolipids in the table reflects their relative migration on hptlc (highest migrating/most hydrophobic first) and for clarity
are grouped according to their lipid moiety (Dolichol, PI or IPC18). ND � not determined. bResults in species with lower migration, cResults
in species with higher migration.
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process these compounds in vitro is summarized in
Figure 1, panels b�d and described in detail below.

Synthetic Man2GlcN-PI and Man2GlcN-IPC18

Efficiently Prime GPI Biosynthesis. To determine
whether synthetic Man2GlcN-PI and analogues thereof
can prime the trypanosomal GPI pathway in vitro, the
cell-free system (i.e., washed trypanosome membranes)
was incubated with GDP-[3H]Man in the presence of
the compounds to see if they would prime the produc-
tion of radiolabeled GPI intermediates. The production
of endogenous radiolabeled GPI intermediates was pre-
vented by inclusion of N-ethylmaleimide, which inhibits
the UDP-GlcNAc:PI �1-6 GlcNAc transferase but not the
downstream enzymes of GPI biosynthesis (28), and the
production of dolichol cycle intermediates was pre-
vented by the addition of tunicamycin. As a positive con-
trol, the production of radiolabeled GPI intermediates
was stimulated by the addition of 10 �M of synthetic
GlcNAc-PI or GlcNAc-IPC18 (22−24). The radiolabeled
glycolipids were separated by hptlc and visualized by
fluorography (Figure 3, panel a), and their identities were
determined by chemical and enzymatic treatments
(Table 1). As described previously (22−24), radiola-
beled glycolipids produced from GlcNAc-IPC18 migrate
more slowly on hptlc than the corresponding products
of GlcNAc-PI as a result of the lower hydrophobicity of
their lipid component. The addition of 10 �M synthetic
Man2GlcN-PI produced four radiolabeled downstream
products (Figure 3, panel a) that were identified as
Man3GlcN-PI (M3), Man3GlcN-(acyl)PI (aM3), EtNPMan3-
GlcN-(acyl)PI (glycolipid C=), and EtNPMan3GlcN-PI (gly-
colipid A=) (Supplementary Figure S1). The addition of
10 �M synthetic Man2GlcNAc-IPC18 also resulted in the
production of the expected products (Figure 3, panel a),
i.e., those corresponding to M3, aM3, glycolipid C= and
glycolipid A= (Figure 1, panel b), and two additional
products (Supplementary Table S2 and Supplementary
Figure S2). One of these, labeled X, is a GPI of unknown
structure (Table 1; Supplementary Table S2 and Supple-
mentary Figure S3). However, the other, migrating be-
tween M3 and aM3, was shown to be [3H]-Man2GlcNAc-
IPC18 (Supplementary Figure S3). The production of a
radiolabeled M2 species occurred only when priming
GPI biosynthesis with Man2GlcN-IPC18 and not when
priming with Man2GlcN-PI. We considered the possibil-
ity that the generation of the [3H]-M2 species could have
arisen from the partial decomposition of Man2GlcNAc-
IPC18 to Man1GlcNAc-IPC18, but none was detected.

Next, we investigated whether Man2GlcNAc-IPC18 might
be trimmed back to Man1GlcNAc-IPC18 via �-manno-
sidase activity in the cell-free system. However, the in-
clusion of the �-mannosidase inhibitors swainsonine
and kifunensine had no effect (Supplementary Figure
S4). Thus, we favor a transglycoslyation mechanism
(Figure 1, panel c), and this is discussed later.

Priming GPI Biosynthesis with Man2GlcNAc-PI and
Man2GlcNAc-IPC18. GPI biosynthesis in T. brucei pro-
ceeds via the de-N-acetylation of GlcNAc-PI to produce
GlcN-PI (17), which is strictly required for mannosylation
by MTI to form Man1GlcN-PI (18). It has been shown pre-
viously that the de-N-acetylase is unable to act on
Man1GlcNAc-PI, confirming this sequence of events
(18). However, it is not known if the subsequent manno-
syltransferases, MTII and MTIII, require the presence
of a free amine group to elaborate Man1GlcN-PI to
Man2GlcN-PI and Man2GlcN-PI to Man3GlcN-PI, respec-
tively. To clarify this situation, we chemically N-acetyl-
ated the M2 analogues, to form Man2GlcNAc-PI and
Man2GlcNAc-IPC18, and tested the ability of the cell-
free system to process them. Both N-acetylated M2 ana-
logues were processed to a single prominent product
with hydrophobicity slightly higher than the correspond-
ing M3 analogue (Figure 3, panel b). The identity of the
products as N-acetylated M3 species was confirmed via
chemical N-acetylation, which showed that the products
contained no free amine and co-migrated with chemi-
cally N-acetylated M3 standards (Supplementary Figure
S5). Interestingly, although MTIII can act upon the
N-acetylated M2 analogues, neither the de-N-acetylase
nor inositol acyltransferase are able to act upon them or
their N-acetylated M3 products. The additional faint
band seen with Man2GlcNAc-IPC18 is probably [3H]-
Man2GlcNAc-IPC18 produced by the same putative
transglycosylation mechanism described above.

Effects of Systematic Deoxygenation of
Man2GlcN-IPC18. To assess which of the mannose hy-
droxyl groups of Man2GlcN-IPC18 are important for sub-
strate recognition, we tested the ability of the cell-free
system to process a series of analogues where each OH
group was replaced by H in turn (compounds 6�12). Re-
moval of hydroxyl groups from the first mannose (at-
tached directly to GlcN), as in compounds 6�8, did not
prevent recognition and processing by MTIII, such that
[3H]Man-Man-deoxyMan-GlcN-IPC18 (migrating slightly
faster than fully hydroxylated Man3GlcN-IPC18) was pro-
duced in all cases (Figure 4). However, although Man-(4-
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deoxyMan)-GlcN-IPC18 was processed to the corre-
sponding M3 product, it did not undergo inositol
acylation to form aM3, nor did the addition of ethanol-
amine phosphate occur. This observation reveals that
the 4-hydroxyl of the first mannose is important for sub-
strate recognition by the inositol acyltransferase and
nicely explains why mannosylation must precede inosi-
tol acylation in the T. brucei GPI pathway (19). The lack
of ethanolamine phosphate addition is consistent with
previous work showing that prior inositol acylation is
necessary for ethanolamine phosphate addition (19).

Removal of hydroxyl groups from the second man-
nose residue resulted in the production of radiolabeled
glycolipids with migration identical to that of the equiva-
lent fully hydroxylated species from Man2GlcN-IPC18

onward (Figure 4). This strongly suggests that the pro-
cessing of these compounds proceeds via the afore-
mentioned transglycosylation mechanism, whereby the
terminal deoxymannose is replaced by [3H]-mannose
prior to subsequent elaboration. The production of [3H]-

M2 with the deoxyMan-Man-GlcN-IPC18 species and not
the Man-deoxyMan-GlcN-IPC18 species suggests that
the underlying ManGlcN-IPC18 structure and not the ter-
minal residue is important in determining whether for-
mation of [3H]-M2 occurs. The importance of the agly-
cone and not the terminal residue for this exchange
reaction suggests that the proposed transglycosylation
could be mediated by MTII, as glycosyltransferases have
previously been observed to mediate transglycosyla-
tion (29). Transglycosylation was not observed when
priming with Man2GlcNAc-PI, and it is unclear whether
the observation of in vitro transglycosylation with
Man2GlcNAc-IPC18 has relevance to the situation in
vivo, although such activity could have a potential func-
tion in the recycling of GPI anchors and/or regulating
flux through the GPI pathway.

Effect of Fluoro and Amino Substitution of
Man2GlcN-IPC18. The ability of the cell-free system to
recognize and process the Man2GlcN-IPC18 analogues
containing fluoro or amino substitutions on the second
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mannose (compounds 13�20) was determined
(Figure 5). Analogues substituted at the 2=- or 3=-
positions with either group were neither processed to
M3 nor [3H]-M2. The inability of MTIII to utilize 2=-
substituted analogues is expected, since the 2=-OH is
the acceptor site for the third mannose. However, the in-
ability of MTIII to utilize 3=-substituted Man2GlcN-IPC18

analogues suggests that this position is also important
for MTIII substrate recognition. The 4=-substituted ana-
logues were processed to M3 and beyond, without the
generation of [3H]-M2, whereas the processing of the 6=-
substituted analogues proceeds via [3H]-M2. The lack
of [3H]-M2 production with the 3=- and 4=-substituted
analogues is in contrast to the situation observed with
the 3=- and 4=-deoxy analogues. Interestingly, the pro-
cessing of the 4=-fluoro analogue does not proceed past
the generation of aM3, whereas the 4=-amino analogue
is processed to glycolipid A=, implying that the 4=-
position may be recognized as a hydrogen bond donor
site by the ethanolamine phosphate transferase.

Man2GlcN-PI Analogues As Inhibitors of GPI
Biosynthesis. The 2=- and 3=-substituted Man2GlcNAc-
IPC18 analogues (compounds 13, 14, 17 and 18) and
the 4-deoxy analogue (compound 8) were tested for
their ability to act as inhibitors of GPI biosynthesis in
vitro. The trypanosome cell-free system was preincu-
bated with 100 �M Man2GlcNAc-IPC18 analogues for
5 min prior to the addition of 10 �M synthetic GlcNAc-
IPC18 and GDP-[3H]Man to prime GPI production. Only

the 4-deoxy and 2=-amino analogues significantly inhib-
ited the production of M3 and downstream GPI interme-
diates (Figure 6, panel a). The 4-deoxyMan2GlcNAc-
IPC18 analogue was processed to the corresponding
deoxy-M3 analogue, as observed previously, but surpris-
ingly, the production of fully hydroxylated M3 as well as
aM3 was inhibited (Figure 6, panel a). However, it is not
clear if the 4-deoxyMan2GlcNAc-IPC18 analogue or its
deoxy-M3 product is responsible for the observed inhibi-
tion, and the exact molecular target is unclear. Radio-
metric analysis of the hptlc was unable to resolve
deoxy-M3 and M2 bands, preventing the accurate deter-
mination of the apparent IC50, which is estimated as
�10 �M (Supplementary Figure S6).

The 2=-amino analogue prevented the production of
M3 and led to an accumulation of M2, demonstrating
that inhibition of the MTIII was occurring (Figure 6,
panel b). Quantitative radiometric analysis of the hptlc
showed that MTIII was inhibited with an IC50 of 1.7 	

0.2 �M (Supplementary Figure S7). The inhibition of T.
brucei GPI biosynthesis by mannosamine in vivo, which
also leads to the accumulation of M2 species, has previ-
ously been proposed to occur via the production of
ManN-ManGlcN-PI (30). The synthetic 2=-aminoMan2-
GlcN-IPC18 inhibitor, described here, is identical to this
species apart from the structure of the lipid moiety.
Therefore, our results support the proposed mecha-
nism of inhibition (30, 31) whereby interaction of the ac-
ceptor 2=-hydroxyl group with a basic group of the glyco-
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syltransferase is replaced by a charge�charge inter-
action with the amino group, which would be proto-
nated under assay conditions.

Summary of Substrate Recognition for Enzyme Late
in the Trypanosomal GPI Biosynthetic Pathway. The re-
sults we have obtained using a series of analogues of
Man2GlcNAc-PI and a cell-free system to examine the
substrate recognition of enzymes late in the trypanoso-
mal GPI pathway are summarized in Figure 7. The re-
placement of the natural diacylglycerol lipid moiety
with a simple C18 alkyl chain did not affect the recogni-
tion and processing of the analogues by the GPI path-
way, in agreement with previous studies using GlcNAc-PI
analogues (23, 24). Substrate recognition by MTIII re-
quires the presence of the hydroxyl groups at the 2- and
3-positions of the reducing terminal mannose, and in
contrast to MTI, MTIII does not recognize the amine of
the glucosamine residue. This is consistent with earlier
work by Brown et al. suggesting that MTIII can act on
simple hydrophobic dimannosyl acceptors, implying a
lack of recognition of both the glucosamine and inosi-

tol moiety (32). The inositol acyltransferase re-
quires the presence of a hydroxyl group at the
4-position on the first mannose and the presence
of a free amine on the glucosamine residue, ex-
plaining for the first time the molecular basis be-
hind the requirement for mannosylation prior to
inositol acylation in the trypanosomal GPI path-
way (19).

It is known that the structure of the substrate
for mammalian MTIII is more complex than that
for the corresponding trypanosomal enzyme. The
mammalian MTIII substrate both is acylated on
the inositol ring and contains EtNP attached to
the 2-position of the first mannose residue. Inhi-

bition of EtNP addition to the first mannose by the ter-
penoid lactone YW3548 leads to accumulation of
Man2GlcN-(acyl)PI in mammalian cells (33), strongly
suggesting that mammalian MTIII requires the pres-
ence of the EtNP to the first mannose for substrate rec-
ognition (34). In contrast, the work presented here
shows that substrate recognition by trypanosomal
MTIII requires relatively few features of the natural sub-
strate. Combining this information with the knowl-
edge that MTIII may be readily inhibited by the intro-
duction of a positive charge at the position of the
acceptor hydroxyl group, we aim to produce more
drug-like small molecule inhibitors. Differences in the
structures of the substrates for mammalian and
trypanosomal MTIII suggest that species-specific inhi-
bition may be an achievable goal. Despite the lack of
structural and mechanistic data for MTIII, the chemical
biology approach applied here has revealed that the
MTIII of GPI biosynthesis is an attractive therapeutic
against African sleeping sickness.

METHODS
Materials. GDP-[2-3H]-Mannose (GDP-[3H]Man, 20 Ci/mmol)

was purchased from American Radiochemicals, En3Hance was
purchased from Perkin-Elmer NEN. Aspergillus saitoi �(1,2)-
mannosidase was purchased from Glyko, serum GPI-specific
phospholipase D (GPI-PLD) was used unpurified from human se-
rum, hplc grade solvents were purchased from VWR interna-
tional Ltd., and all other reagents were purchased from Sigma.

Substrates and Substrate Analogues. The syntheses of
D-GlcN�(1-6)-D-myo-inositol-1-HPO4-dipalmitoylglycerol (GlcNAc-
PI) (35) and D-GlcN-�(1-6)-D-myo-inositol-1-octadecyl phos-
phate (GlcNAc-C18) (36) have been described previously. The de-
tails of the synthesis of Man�(1-6)-Man�(1-4)-D-GlcN�(1-6)-D-
myo-inositol-1-HPO4-dipalmitoylglycerol (Man2GlcNAc-PI),

Man�(1-6)-Man�(1-4)-D-GlcN�(1-6)-D-myo-inositol-1-octadecyl
phosphate (Man2GlcNAc-C18), and analogues of Man2GlcNAc-
C18 containing systematic modifications at positions on the first
or second mannose (Figure 2) will be reported elsewhere (37,
38). High resolution mass spectrometric data and 1H NMR spec-
tra for these compounds can be found in Supplementary Table
S3 and Supplementary Figure S8.

The corresponding N-acetyl derivates GlcNAc-PI, GlcNAc-
IPC18, Man2GlcNAc-PI, and Man2GlcNAc-IPC18 were prepared by
treatment with acetic anhydride (22). The identity and purity
of the synthetic substrates was assessed by negative ion
electrospray-mass spectrometry (ES-MS), and the concentration
of stock solutions determined by measurement of the inositol
content by selected ion-monitoring GC-MS (39).

OO

HO OH

OH
O

OH
O NH2

OH

HO
P

O

O

O
O

O

OO

HO OH
OH

O

O

HO

HO

HO

OH

Not recognized
by MTIII

Diacylglycerol not
directly recognized 

Essential for
inositol acylation

NH2 required for
inositol acylation

Not recognized
by MTIIIRequired for

inositol acylation

Recognized
by MTIII

Essential for
addition of third Man

O−
(CH2)14CH3

(CH2)14CH3
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acyl transferase. Evidence for the essentiality of the inositol 2-OH has been reported pre-
viously (27).
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Trypanosome Cell-Free System Assays. Bloodstream form T.
brucei (variant MITat1.4) were isolated, and membranes (cell-
free system) were prepared as described previously and stored
at �80 °C (40). Trypanosome membranes (2 � 107 cell equiv
per assay) were washed, supplemented with fresh N-ethyl-
maleimide (0.2 M) and GDP-[3H]Man (0.5 �Ci per assay), mixed
with substrate or substrate analogues (10 �M), sonicated
briefly, and incubated at 30 °C for 15 min as described previ-
ously (22). Glycolipid products were recovered by extraction into
a chloroform/methanol/water mixture (10/10/3, v/v), evapo-
rated to dryness, partitioned between butan-1-ol and water (41),
and analyzed by hptlc.

Inhibition studies were performed as above, except that the
cell-free system was incubated with the potential inhibitor for
5 min at 30 °C prior to priming with GDP-[3H]Man (0.5 �Ci per as-
say) and 10 �M GlcNAc-IPC18. For IC50 calculation, the produc-
tion of [3H]-M3 was quantified by radiographic analysis of the
hptlc, calculated as cpm(M3)/(cpm(M3) � cpm(M2)), and ana-
lyzed by nonlinear regression (GraFit).

High Performance Thin Layer Chromatography. Glycolipid stan-
dards and samples were applied to 10-cm aluminum-backed
silica gel 60 and developed with chloroform/methanol/13 M
ammonia/1 M ammonium acetate/water (180/140/9/9/23,
v/v). Dried hptlc plates were analyzed by a radiometric scanner
(Bioscan AR2000) and/or sprayed with En3Hance and radiola-
beled components visualized by fluorography at �80 °C using
Kodak XAR-5 film with an intensifying screen.

Enzymatic and Chemical Treatments of Radiolabeled
Glycolipids. Enzymatic digestion with jack bean �-mannosidase
(JB�M), Aspergillus saitoi �-mannosidase (AS�M), GPI-specific
phospholipase D (PLD), and PI-specific phospholipase C (PLC);
chemical digestion using acid and base hydrolysis; and chemi-
cal N-acetlyation were performed as described previously (18,
22, 41). The specificity of the treatments is described in Supple-
mentary Table S1.

Supporting Information Available: This material is free of charge
via the Internet.
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